3D ÇÁ¸°Æà ºñ¾Ð¹Ú À¯¹æ ÆÒÅÒ Á¦ÀÛÀ» À§ÇÑ º¹¼¿ ±â¹Ý ¼öÄ¡ ¸ðµ¨¿¡ °üÇÑ ¿¬±¸
A Numerical Voxel Model for 3D-printed Uncompressed Breast Phantoms

Journal of Biomedical Engineering Research 2017³â 38±Ç 3È£ p.116 ~ p.122

À±ÇѺó(Youn Han-Been) - ¾ç»êºÎ»ê´ëÇб³º´¿ø ¹æ»ç¼±Á¾¾çÇаú
¹éöÇÏ(Baek Cheol-Ha) - µ¿¼­´ëÇб³ ¹æ»ç¼±Çаú
ÀüÈ£»ó(Jeon Ho-Sang) - ¾ç»êºÎ»ê´ëÇб³º´¿ø ¹æ»ç¼±Á¾¾çÇаú
±èÁø¼º(Kim Jin-Sung) - ¿¬¼¼´ëÇб³ ¹æ»ç¼±Á¾¾çÇаú
³²ÁöÈ£(Nam Ji-Ho) - ¾ç»êºÎ»ê´ëÇб³º´¿ø ¹æ»ç¼±Á¾¾çÇаú
ÀÌÀÚ¿µ(Lee Ja-Young) - ¾ç»êºÎ»ê´ëÇб³º´¿ø ¹æ»ç¼±Á¾¾çÇаú
ÀÌÁÖÇý(Lee Ju-Hye) - ¾ç»êºÎ»ê´ëÇб³º´¿ø ¹æ»ç¼±Á¾¾çÇаú
¹Ú´Þ(Park Dahl) - ºÎ»ê´ëÇб³º´¿ø ¹æ»ç¼±Á¾¾çÇаú
±è¿øÅÃ(Kim Won-Taek) - ºÎ»ê´ëÇб³º´¿ø ¹æ»ç¼±Á¾¾çÇаú
±â¿ë°£(Ki Yong-Kan) - ºÎ»ê´ëÇб³º´¿ø ¹æ»ç¼±Á¾¾çÇаú
±èµ¿Çö(Kim Dong-Hyun) - ºÎ»ê´ëÇб³º´¿ø ¹æ»ç¼±Á¾¾çÇаú
¿øÁ¾ÈÆ(Won Jong-Hun) - µ¿¼­´ëÇб³ ¹æ»ç¼±Çаú
±èÈ£°æ(Kim Ho-Kyung) - ºÎ»ê´ëÇб³ ±â°è°øÇкÎ

Abstract

Physical breast phantoms would be useful for the development of a dedicated breast computed tomography (BCT) system and its optimization. While the conventional breast phantoms are available in compressed forms, which are appropriate for the mammography and digital tomosynthesis, however, the BCT requires phantoms in uncompressed forms. Although simple cylindrical plastic phantoms can be used for the development of the BCT system, they will not replace the roles of uncompressed phantoms describing breast anatomies for a better study of the BCT. In this study, we have designed a numerical voxel breast phantom accounting for the random nature of breast anatomies and applied it to the 3D printer to fabricate the uncompressed anthropomorphic breast phantom. The numerical voxel phantom mainly consists of the external skin and internal anatomies, including the ductal networks, the glandular tissues, the Cooper's ligaments, and the adipose tissues. The voxel phantom is then converted into a surface data in the STL file format by using the marching cube algorithm. Using the STL file, we obtain the skin and the glandular tissue from the 3D printer, and then assemble them. The uncompressed breast phantom is completed by filling the remaining space with oil, which mimics the adipose tissues. Since the breast phantom developed in this study is completely software-generated, we can create readily anthropomorphic phantoms accounting for diverse human breast anatomies.

Å°¿öµå

Breast phantom, 3D printer, random number, breast CT
¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸
µîÀçÀú³Î Á¤º¸
ÇмúÁøÈïÀç´Ü(KCI) ´ëÇÑÀÇÇÐȸ ȸ¿ø 
ÁÖÁ¦ÄÚµå
ÁÖÁ¦¸í(Target field)
¿¬±¸´ë»ó(Population)
¿¬±¸Âü¿©(Sample size)
´ë»ó¼ºº°(Gender)
Áúº´Æ¯¼º(Condition Category)
¿¬±¸È¯°æ(Setting)
¿¬±¸¼³°è(Study Design)
¿¬±¸±â°£(Period)
ÁßÀç¹æ¹ý(Intervention Type)
ÁßÀç¸íĪ(Intervention Name)
Å°¿öµå(Keyword)
À¯È¿¼º°á°ú(Recomendation)
º» ¿¬±¸¿¡¼­´Â À¯¹æ¾Ï Áø´Ü¿ë CT ½Ã½ºÅÛÀ» °³¹ßÇÏ°í ÃÖÀûÈ­ ÇÒ ¶§ À¯¿ëÇÏ°Ô »ç¿ëµÉ ¼ö ÀÖ´Â ÀÎü¸ð»çÀ¯¹æ ÆÒÅÒÀ» 3D ÇÁ¸°Å͸¦ ÀÌ¿ëÇÏ¿© Á¦ÀÛÇÏ¿´´Ù.
¿¬±¸ºñÁö¿ø(Fund Source)
±Ù°Å¼öÁØÆò°¡(Evidence Hierarchy)
ÃâÆdz⵵(Year)
Âü¿©ÀúÀÚ¼ö(Authors)
´ëÇ¥ÀúÀÚ
KCDÄÚµå
ICD 03
°Ç°­º¸ÇèÄÚµå